一百個例題 (86 ~ 90)
Ching-Tang Tseng
Hamilton, New Zealand
5 October 2024
\ (86)macro.f This macro coding style is effect in Lina64 system.20171201
: macro
: char parse postpone sliteral postpone evaluate
postpone ; immediate
;
\ Usage is e.g.
macro square " dup *" ok
: foo 5 square . ; ok
foo 25 ok
\ (87)DH. DB. in Lina64 with special word: CO.20171202 \ Switch to hex for the duration of the definition. : HEX: R> BASE @ >R >R HEX CO R> BASE ! ; : BINARY: R> BASE @ >R >R 2 BASE ! CO R> BASE ! ; \ An example : (DH.) HEX: <# #S #> ; : (DB.) BINARY: <# #S #> ; : DH. (DH.) type ; : DB. (DB.) TYPE ; \ 1.2 (DH.) TYPE \ C OK \ 1.2 DH. \ C OK \ 8.3.5 CO \ Name: CO \ No stackeffect \ Attributes: \ Description: Return to the caller, suspending interpretation of the current definition, such that \ when the caller exits, this definition is resumed. The return stack must not be engaged, such as \ between >R and R> , or DO and LOOP .
\ (88)Taylor series method to solve ODE(order 4 ) in lina64 ./f5106
\ data M,h,t,x/200,0.01,-1.0,3.0/
2 integers k m
7 reals h t x x1 x2 x3 x4
: taylor basic
10 print " * "
20 print " *, Taylor series method (order 4) "
30 print " *, Section 8.1, Kincaid-Cheney "
40 print " * "
50 let m = 200
60 let { h = 0.01 e 0 }
70 let { t = -1.0 e 0 }
80 let { x = 3.0 e 0 }
90 print 0 , { t , x }
100 for k = 1 to m
110 let { x1 = cos ( t ) - sin ( x ) + t ** 2.0 e 0 }
120 let { x2 = negate ( sin ( t ) ) - x1 * cos ( x ) + 2.0 e 0 * t }
130 let { x3 = negate ( cos ( t ) ) - x2 * cos ( x ) + ( x1 * x1 ) * sin ( x ) + 2.0 e 0 }
140 let { x4 = sin ( t ) + ( x3 *8 3.0 e 0 - x3 ) * cos ( x ) + 3.0 e 0 * x1 * x2 * sin ( x ) }
150 let { x = x + h * ( x1 + ( h / 2.0 e 0 ) * ( x2 + ( h / 6.0 e 0 ) * ( x3 + ( h / 24.0 e 0 ) * x4 ) ) ) }
160 let { t = t + h }
170 print k , { t , x }
200 next k
210 end ;
\ (88-1)Taylor series method to solve ODE(order 4) in gforth64 abc forth
2 integers k m
7 reals h t x x1 x2 x3 x4
: taylor ( -- )
basic
10 print " * "
20 print " * Taylor series method (order 4) "
30 print " * Section 8.1, Kincaid-Cheney "
40 print " * "
50 let m = 200
60 let { h = 0.01e0 }
70 let { t = -1.0e0 }
80 let { x = 3.0e0 }
90 print 0 , { t , x }
100 for k = 1 to m
110 let { x1 = cos ( t ) - sin ( x ) + t ** 2.0e0 }
120 let { x2 = negate ( sin ( t ) ) - x1 * cos ( x ) + 2.0e0 * t }
130 let { x3 = negate ( cos ( t ) ) - x2 * cos ( x ) + ( x1 * x1 ) * sin ( x ) + 2.0e0 }
140 let { x4 = sin ( t ) + ( x3 ** 3.0e0 - x3 ) * cos ( x ) + 3.0e * x1 * x2 * sin ( x ) }
150 let { x = x + h * ( x1 + ( h / 2.0e0 ) * ( x2 + ( h / 6.0e0 ) * ( x3 + ( h / 24.0e0 ) * x4 ) ) ) }
160 let { t = t + h }
170 print k , { t , x }
200 next k
210 end ;
\s
\ Reference:
\ c
\ c Second Edition
\ c Numerical Analysis:
\ c The Mathematics of Scientific Computing
\ c D.R. Kincaid & E.W. Cheney
\ c Brooks/Cole Publ., 1996
\ c ISBN 0-534-33892-5
\ c COPYRIGHT (c) 1996
\ c
\ c Section 8.2
\ c
\ c Solving the initial value problem using Taylor Series
\ c
\ c
\ c file: taylor.f
\ c
\ data M,h,t,x/200,0.01,-1.0,3.0/
\ c
\ print *
\ print *,' Taylor series method (order 4) '
\ print *,' Section 8.1, Kincaid-Cheney'
\ print *
\ print 3,'k','t','x'
\ print 4,0,t,x
\ c
\ do 2 k=1,M
\ x1 = cos(t) - sin(x) + t**2.0
\ x2 = -sin(t) - x1*cos(x) + 2.0*t
\ x3 = -cos(t) - x2*cos(x) + (x1**2.0)*sin(x) + 2.0
\ x4 = sin(t) + ((x3)**3.0 -x3)*cos(x) + 3.0*x1*x2*sin(x)
\ x = x + h*(x1 + (h/2.)*(x2 + (h/6.)*(x3 + (h/24.)*x4)))
\ t = t + h
\ print 4,k,t,x
\ 2 continue
\ c
\ 3 format(a6,a9,a15)
\ 4 format(1x,i5,2x,e13.6,2x,e13.6)
\ stop
\ end
include taylor redefined k ok
taylor
*
* Taylor series method (order 4)
* Section 8.1, Kincaid-Cheney
*
0 -1.00000000000000E0 3.00000000000000E0
1 -9.90000000000000E-1 3.01400331867272E0
2 -9.80000000000000E-1 3.02803125373840E0
3 -9.70000000000000E-1 3.04208574304848E0
4 -9.60000000000000E-1 3.05616870908915E0
5 -9.50000000000000E-1 3.07028205863460E0
6 -9.40000000000000E-1 3.08442768236222E0
7 -9.30000000000000E-1 3.09860745442929E0
8 -9.20000000000000E-1 3.11282323201108E0
9 -9.10000000000000E-1 3.12707685479982E0
10 -9.00000000000000E-1 3.14137014446445E0
11 -8.90000000000000E-1 3.15570490407070E0
12 -8.80000000000000E-1 3.17008291746145E0
13 -8.70000000000000E-1 3.18450594859697E0
14 -8.60000000000000E-1 3.19897574085496E0
15 -8.50000000000000E-1 3.21349401629017E0
16 -8.40000000000000E-1 3.22806247485362E0
17 -8.30000000000000E-1 3.24268279357115E0
18 -8.20000000000000E-1 3.25735662568157E0
19 -8.10000000000000E-1 3.27208559973412E0
20 -8.00000000000000E-1 3.28687131864576E0
21 -7.90000000000000E-1 3.30171535871815E0
22 -7.80000000000000E-1 3.31661926861472E0
23 -7.70000000000000E-1 3.33158456829826E0
24 -7.60000000000000E-1 3.34661274792935E0
25 -7.50000000000000E-1 3.36170526672629E0
26 -7.40000000000000E-1 3.37686355178704E0
27 -7.30000000000000E-1 3.39208899687415E0
28 -7.20000000000000E-1 3.40738296116338E0
29 -7.10000000000000E-1 3.42274676795710E0
30 -7.00000000000000E-1 3.43818170336371E0
31 -6.90000000000000E-1 3.45368901494417E0
32 -6.80000000000000E-1 3.46926991032735E0
33 -6.70000000000000E-1 3.48492555579552E0
34 -6.60000000000000E-1 3.50065707484203E0
35 -6.50000000000000E-1 3.51646554670289E0
36 -6.40000000000000E-1 3.53235200486450E0
37 -6.30000000000000E-1 3.54831743554973E0
38 -6.20000000000000E-1 3.56436277618494E0
39 -6.10000000000000E-1 3.58048891385056E0
40 -6.00000000000000E-1 3.59669668371799E0
41 -5.90000000000000E-1 3.61298686747618E0
42 -5.80000000000000E-1 3.62936019175081E0
43 -5.70000000000000E-1 3.64581732651983E0
44 -5.60000000000000E-1 3.66235888352892E0
45 -5.50000000000000E-1 3.67898541471076E0
46 -5.40000000000000E-1 3.69569741061222E0
47 -5.30000000000000E-1 3.71249529883380E0
48 -5.20000000000000E-1 3.72937944248577E0
49 -5.10000000000000E-1 3.74635013866571E0
50 -5.00000000000000E-1 3.76340761696235E0
51 -4.90000000000000E-1 3.78055203799070E0
52 -4.80000000000000E-1 3.79778349196384E0
53 -4.70000000000000E-1 3.81510199730654E0
54 -4.60000000000000E-1 3.83250749931645E0
55 -4.49999999999999E-1 3.84999986887835E0
56 -4.40000000000000E-1 3.86757890123739E0
57 -4.30000000000000E-1 3.88524431483701E0
58 -4.19999999999999E-1 3.90299575022768E0
59 -4.09999999999999E-1 3.92083276905230E0
60 -3.99999999999999E-1 3.93875485311441E0
61 -3.89999999999999E-1 3.95676140353516E0
62 -3.79999999999999E-1 3.97485174000507E0
63 -3.69999999999999E-1 3.99302510013663E0
64 -3.59999999999999E-1 4.01128063892351E0
65 -3.49999999999999E-1 4.02961742831219E0
66 -3.39999999999999E-1 4.04803445689171E0
67 -3.29999999999999E-1 4.06653062970685E0
68 -3.19999999999999E-1 4.08510476820015E0
69 -3.09999999999999E-1 4.10375561028756E0
70 -2.99999999999999E-1 4.12248181057268E0
71 -2.89999999999999E-1 4.14128194070366E0
72 -2.79999999999999E-1 4.16015448987716E0
73 -2.69999999999999E-1 4.17909786549267E0
74 -2.59999999999999E-1 4.19811039396072E0
75 -2.49999999999999E-1 4.21719032166743E0
76 -2.39999999999999E-1 4.23633581609803E0
77 -2.29999999999999E-1 4.25554496712079E0
78 -2.19999999999999E-1 4.27481578843282E0
79 -2.09999999999999E-1 4.29414621916815E0
80 -1.99999999999999E-1 4.31353412566839E0
81 -1.89999999999999E-1 4.33297730341515E0
82 -1.79999999999999E-1 4.35247347912321E0
83 -1.69999999999999E-1 4.37202031299245E0
84 -1.59999999999999E-1 4.39161540111606E0
85 -1.49999999999999E-1 4.41125627804200E0
86 -1.39999999999999E-1 4.43094041948356E0
87 -1.29999999999999E-1 4.45066524517488E0
88 -1.19999999999999E-1 4.47042812186596E0
89 -1.09999999999999E-1 4.49022636645160E0
90 -9.99999999999992E-2 4.51005724922771E0
91 -8.99999999999993E-2 4.52991799726795E0
92 -7.99999999999993E-2 4.54980579791316E0
93 -6.99999999999993E-2 4.56971780236541E0
94 -5.99999999999993E-2 4.58965112937790E0
95 -4.99999999999993E-2 4.60960286903159E0
96 -3.99999999999992E-2 4.62957008658907E0
97 -2.99999999999992E-2 4.64954982641547E0
98 -1.99999999999992E-2 4.66953911595623E0
99 -9.99999999999925E-3 4.68953496976106E0
100 7.52869988573934E-16 4.70953439354318E0
101 1.00000000000008E-2 4.72953438826286E0
102 2.00000000000008E-2 4.74953195422398E0
103 3.00000000000008E-2 4.76952409517247E0
104 4.00000000000008E-2 4.78950782238533E0
105 5.00000000000008E-2 4.80948015873896E0
106 6.00000000000008E-2 4.82943814274579E0
107 7.00000000000008E-2 4.84937883254824E0
108 8.00000000000007E-2 4.86929930985933E0
109 9.00000000000007E-2 4.88919668383937E0
110 1.00000000000001E-1 4.90906809489885E0
111 1.10000000000001E-1 4.92891071841753E0
112 1.20000000000001E-1 4.94872176837072E0
113 1.30000000000001E-1 4.96849850085358E0
114 1.40000000000001E-1 4.98823821749537E0
115 1.50000000000001E-1 5.00793826875578E0
116 1.60000000000001E-1 5.02759605709597E0
117 1.70000000000001E-1 5.04720904001792E0
118 1.80000000000001E-1 5.06677473296597E0
119 1.90000000000001E-1 5.08629071208515E0
120 2.00000000000001E-1 5.10575461683161E0
121 2.10000000000001E-1 5.12516415243122E0
122 2.20000000000001E-1 5.14451709218274E0
123 2.30000000000001E-1 5.16381127960298E0
124 2.40000000000001E-1 5.18304463041180E0
125 2.50000000000001E-1 5.20221513435567E0
126 2.60000000000001E-1 5.22132085686877E0
127 2.70000000000001E-1 5.24035994057177E0
128 2.80000000000001E-1 5.25933060660847E0
129 2.90000000000001E-1 5.27823115582151E0
130 3.00000000000001E-1 5.29705996976865E0
131 3.10000000000001E-1 5.31581551158175E0
132 3.20000000000001E-1 5.33449632667108E0
133 3.30000000000001E-1 5.35310104327801E0
134 3.40000000000001E-1 5.37162837287958E0
135 3.50000000000001E-1 5.39007711044894E0
136 3.60000000000001E-1 5.40844613457587E0
137 3.70000000000001E-1 5.42673440745194E0
138 3.80000000000001E-1 5.44494097472537E0
139 3.90000000000001E-1 5.46306496523059E0
140 4.00000000000001E-1 5.48110559059800E0
141 4.10000000000001E-1 5.49906214474942E0
142 4.20000000000001E-1 5.51693400328501E0
143 4.30000000000001E-1 5.53472062276751E0
144 4.40000000000001E-1 5.55242153990973E0
145 4.50000000000001E-1 5.57003637067127E0
146 4.60000000000001E-1 5.58756480927059E0
147 4.70000000000001E-1 5.60500662711828E0
148 4.80000000000001E-1 5.62236167167787E0
149 4.90000000000001E-1 5.63962986525971E0
150 5.00000000000001E-1 5.65681120375425E0
151 5.10000000000001E-1 5.67390575531022E0
152 5.20000000000001E-1 5.69091365896359E0
153 5.30000000000001E-1 5.70783512322274E0
154 5.40000000000001E-1 5.72467042461543E0
155 5.50000000000001E-1 5.74141990620275E0
156 5.60000000000001E-1 5.75808397606512E0
157 5.70000000000001E-1 5.77466310576543E0
158 5.80000000000001E-1 5.79115782879393E0
159 5.90000000000001E-1 5.80756873899947E0
160 6.00000000000001E-1 5.82389648901151E0
161 6.10000000000001E-1 5.84014178865698E0
162 6.20000000000001E-1 5.85630540337598E0
163 6.30000000000001E-1 5.87238815264011E0
164 6.40000000000001E-1 5.88839090837694E0
165 6.50000000000001E-1 5.90431459340389E0
166 6.60000000000001E-1 5.92016017987487E0
167 6.70000000000001E-1 5.93592868774237E0
168 6.80000000000001E-1 5.95162118323788E0
169 6.90000000000001E-1 5.96723877737319E0
170 7.00000000000001E-1 5.98278262446484E0
171 7.10000000000001E-1 5.99825392068402E0
172 7.20000000000001E-1 6.01365390263375E0
173 7.30000000000001E-1 6.02898384595535E0
174 7.40000000000001E-1 6.04424506396569E0
175 7.50000000000001E-1 6.05943890632684E0
176 7.60000000000001E-1 6.07456675774938E0
177 7.70000000000001E-1 6.08963003673064E0
178 7.80000000000001E-1 6.10463019432890E0
179 7.90000000000001E-1 6.11956871297446E0
180 8.00000000000001E-1 6.13444710531846E0
181 8.10000000000001E-1 6.14926691312004E0
182 8.20000000000001E-1 6.16402970617256E0
183 8.30000000000001E-1 6.17873708126922E0
184 8.40000000000001E-1 6.19339066120860E0
185 8.50000000000001E-1 6.20799209384029E0
186 8.60000000000001E-1 6.22254305115098E0
187 8.70000000000001E-1 6.23704522839102E0
188 8.80000000000001E-1 6.25150034324157E0
189 8.90000000000001E-1 6.26591013502245E0
190 9.00000000000001E-1 6.28027636394051E0
191 9.10000000000001E-1 6.29460081037847E0
192 9.20000000000001E-1 6.30888527422417E0
193 9.30000000000001E-1 6.32313157424002E0
194 9.40000000000001E-1 6.33734154747233E0
195 9.50000000000001E-1 6.35151704870052E0
196 9.60000000000001E-1 6.36565994992567E0
197 9.70000000000001E-1 6.37977213989839E0
198 9.80000000000001E-1 6.39385552368558E0
199 9.90000000000001E-1 6.40791202227567E0
200 1.00000000000000E0 6.42194357222237E0 ok
\ (89)high level within : within1 ( n1 n2 n3 -- flag ) over - >r - r> u< ; : within2 OVER - -ROT - SWAP U< ;
\ (90)A M T test in gforth64 ABC.20171202
4 (array) aa
3 4 (matrix) mm
2 2 2 (tensor) tt
3 integers i j k
: initaa basic
10 for i = 0 to 4
20 let aa ( i ) = i
30 next i
40 end ;
: initmm basic
10 for i = 0 to 3
20 for j = 0 to 4
30 let mm ( i j ) = i * j
40 next j
50 next i
60 end ;
: inittt basic
10 for i = 0 to 2
20 for j = 0 to 2
30 for k = 0 to 2
40 let tt ( i j k ) = i * j * k
50 next k
60 next j
70 next i
80 end ;
: .aa basic
10 for i = 0 to 4
20 print " aa( " ; i ; " )= " , aa ( i )
30 next i
40 end ;
: .mm basic
10 for i = 0 to 3
20 for j = 0 to 4
30 print " mm( " ; i ; j ; " )= " , mm ( i j )
40 next j
50 next i
60 end ;
: .tt basic
10 for i = 0 to 2
20 for j = 0 to 2
30 for k = 0 to 2
40 print " tt(" ; i ; j ; k ; " ) = " , tt ( i j k )
50 next k
60 next j
70 next i
80 end ;
4 array faa
3 4 matrix fmm
2 2 2 tensor ftt
: initfaa basic
10 for i = 0 to 4
20 let { faa ( i ) = I>R ( i ) }
30 next i
40 end ;
: initfmm basic
10 for i = 0 to 3
20 for j = 0 to 4
30 let { fmm ( i j ) = I>R ( i ) * I>R ( j ) }
40 next j
50 next i
60 end ;
: initftt basic
10 for i = 0 to 2
20 for j = 0 to 2
30 for k = 0 to 2
40 let { ftt ( i j k ) = I>R ( i ) * I>R ( j ) * I>R ( k ) }
50 next k
60 next j
70 next i
80 end ;
: .faa basic
10 for i = 0 to 4
20 print " faa( " ; i ; " )= " , { faa ( i ) }
30 next i
40 end ;
: .fmm basic
10 for i = 0 to 3
20 for j = 0 to 4
30 print " fmm( " ; i ; j ; " )= " , { fmm ( i j ) }
40 next j
50 next i
60 end ;
: .ftt basic
10 for i = 0 to 2
20 for j = 0 to 2
30 for k = 0 to 2
40 print " ftt( " ; i ; j ; k ; " ) = " , { ftt ( i j k ) }
50 next k
60 next j
70 next i
80 end ;
4 [array] zaa
3 4 [matrix] zmm
2 2 2 [tensor] ztt
: initzaa basic
10 for i = 0 to 4
20 let Z{ zaa ( i ) = 1.0e0 - 2.0e0 ii }Z
30 next i
40 end ;
: initzmm basic
10 for i = 0 to 3
20 for j = 0 to 4
30 let Z{ zmm ( i j ) = ZRAND }Z
40 next j
50 next i
60 end ;
: initztt basic
10 for i = 0 to 2
20 for j = 0 to 2
30 for k = 0 to 2
40 let z{ ztt ( i j k ) = ZRAND }Z
50 next k
60 next j
70 next i
80 end ;
: .zaa basic
10 for i = 0 to 4
20 print " zaa( " ; i ; " )= " , Z{ zaa ( i ) }Z
30 next i
40 end ;
: .zmm basic
10 for i = 0 to 3
20 for j = 0 to 4
30 print " zmm( " ; i ; j ; " )= " , Z{ zmm ( i j ) }Z
40 next j
50 next i
60 end ;
: .ztt basic
10 for i = 0 to 2
20 for j = 0 to 2
30 for k = 0 to 2
40 print " ztt( " ; i ; j ; k ; " ) = " , Z{ ztt ( i j k ) }Z
50 next k
60 next j
70 next i
80 end ;
: main basic
10 run initaa
20 run initmm
40 run inittt
50 run .aa cr
60 run .mm cr
70 run .tt cr
110 run initfaa
120 run initfmm
130 run initftt
140 run .faa cr
150 run .fmm cr
160 run .ftt cr
210 run initzaa
220 run initzmm
230 run initztt
240 run .zaa cr
250 run .zmm cr
260 run .ztt cr
300 end ;
main
\s
ching@center:~$ cd gforth
ching@center:~/gforth$ ./abc06
Gforth 0.7.2, Copyright (C) 1995-2008 Free Software Foundation, Inc.
Gforth comes with ABSOLUTELY NO WARRANTY; for details type `license'
Type `bye' to exit
include testamt redefined i redefined j redefined k ok
main
aa( 0 )= 0
aa( 1 )= 1
aa( 2 )= 2
aa( 3 )= 3
aa( 4 )= 4
mm( 0 0 )= 0
mm( 0 1 )= 0
mm( 0 2 )= 0
mm( 0 3 )= 0
mm( 0 4 )= 0
mm( 1 0 )= 0
mm( 1 1 )= 1
mm( 1 2 )= 2
mm( 1 3 )= 3
mm( 1 4 )= 4
mm( 2 0 )= 0
mm( 2 1 )= 2
mm( 2 2 )= 4
mm( 2 3 )= 6
mm( 2 4 )= 8
mm( 3 0 )= 0
mm( 3 1 )= 3
mm( 3 2 )= 6
mm( 3 3 )= 9
mm( 3 4 )= 12
tt(0 0 0 ) = 0
tt(0 0 1 ) = 0
tt(0 0 2 ) = 0
tt(0 1 0 ) = 0
tt(0 1 1 ) = 0
tt(0 1 2 ) = 0
tt(0 2 0 ) = 0
tt(0 2 1 ) = 0
tt(0 2 2 ) = 0
tt(1 0 0 ) = 0
tt(1 0 1 ) = 0
tt(1 0 2 ) = 0
tt(1 1 0 ) = 0
tt(1 1 1 ) = 1
tt(1 1 2 ) = 2
tt(1 2 0 ) = 0
tt(1 2 1 ) = 2
tt(1 2 2 ) = 4
tt(2 0 0 ) = 0
tt(2 0 1 ) = 0
tt(2 0 2 ) = 0
tt(2 1 0 ) = 0
tt(2 1 1 ) = 2
tt(2 1 2 ) = 4
tt(2 2 0 ) = 0
tt(2 2 1 ) = 4
tt(2 2 2 ) = 8
faa( 0 )= 0.00000000000000E0
faa( 1 )= 1.00000000000000E0
faa( 2 )= 2.00000000000000E0
faa( 3 )= 3.00000000000000E0
faa( 4 )= 4.00000000000000E0
fmm( 0 0 )= 0.00000000000000E0
fmm( 0 1 )= 0.00000000000000E0
fmm( 0 2 )= 0.00000000000000E0
fmm( 0 3 )= 0.00000000000000E0
fmm( 0 4 )= 0.00000000000000E0
fmm( 1 0 )= 0.00000000000000E0
fmm( 1 1 )= 1.00000000000000E0
fmm( 1 2 )= 2.00000000000000E0
fmm( 1 3 )= 3.00000000000000E0
fmm( 1 4 )= 4.00000000000000E0
fmm( 2 0 )= 0.00000000000000E0
fmm( 2 1 )= 2.00000000000000E0
fmm( 2 2 )= 4.00000000000000E0
fmm( 2 3 )= 6.00000000000000E0
fmm( 2 4 )= 8.00000000000000E0
fmm( 3 0 )= 0.00000000000000E0
fmm( 3 1 )= 3.00000000000000E0
fmm( 3 2 )= 6.00000000000000E0
fmm( 3 3 )= 9.00000000000000E0
fmm( 3 4 )= 1.20000000000000E1
ftt( 0 0 0 ) = 0.00000000000000E0
ftt( 0 0 1 ) = 0.00000000000000E0
ftt( 0 0 2 ) = 0.00000000000000E0
ftt( 0 1 0 ) = 0.00000000000000E0
ftt( 0 1 1 ) = 0.00000000000000E0
ftt( 0 1 2 ) = 0.00000000000000E0
ftt( 0 2 0 ) = 0.00000000000000E0
ftt( 0 2 1 ) = 0.00000000000000E0
ftt( 0 2 2 ) = 0.00000000000000E0
ftt( 1 0 0 ) = 0.00000000000000E0
ftt( 1 0 1 ) = 0.00000000000000E0
ftt( 1 0 2 ) = 0.00000000000000E0
ftt( 1 1 0 ) = 0.00000000000000E0
ftt( 1 1 1 ) = 1.00000000000000E0
ftt( 1 1 2 ) = 2.00000000000000E0
ftt( 1 2 0 ) = 0.00000000000000E0
ftt( 1 2 1 ) = 2.00000000000000E0
ftt( 1 2 2 ) = 4.00000000000000E0
ftt( 2 0 0 ) = 0.00000000000000E0
ftt( 2 0 1 ) = 0.00000000000000E0
ftt( 2 0 2 ) = 0.00000000000000E0
ftt( 2 1 0 ) = 0.00000000000000E0
ftt( 2 1 1 ) = 2.00000000000000E0
ftt( 2 1 2 ) = 4.00000000000000E0
ftt( 2 2 0 ) = 0.00000000000000E0
ftt( 2 2 1 ) = 4.00000000000000E0
ftt( 2 2 2 ) = 8.00000000000000E0
zaa( 0 )= 1.00000000000000E0 - 2.00000000000000E0 ii
zaa( 1 )= 1.00000000000000E0 - 2.00000000000000E0 ii
zaa( 2 )= 1.00000000000000E0 - 2.00000000000000E0 ii
zaa( 3 )= 1.00000000000000E0 - 2.00000000000000E0 ii
zaa( 4 )= 1.00000000000000E0 - 2.00000000000000E0 ii
zmm( 0 0 )= 2.18418296993905E-1 + 9.56317576559408E-1 ii
zmm( 0 1 )= 8.29509233976486E-1 + 5.61695442796543E-1 ii
zmm( 0 2 )= 4.15307081497883E-1 + 6.61187349195214E-2 ii
zmm( 0 3 )= 2.57577792395641E-1 + 1.09956793538275E-1 ii
zmm( 0 4 )= 4.38289977814206E-2 + 6.33965712335876E-1 ii
zmm( 1 0 )= 6.17272290688600E-2 + 4.49538960330905E-1 ii
zmm( 1 1 )= 4.01306281518799E-1 + 7.54673486461245E-1 ii
zmm( 1 2 )= 7.97286954148340E-1 + 1.83837115850224E-3 ii
zmm( 1 3 )= 8.97504060947105E-1 + 3.50752337999061E-1 ii
zmm( 1 4 )= 9.45447502166707E-2 + 1.36168915841807E-2 ii
zmm( 2 0 )= 8.59096855325204E-1 + 8.40847450700052E-1 ii
zmm( 2 1 )= 1.23103915771052E-1 + 7.51236407436075E-3 ii
zmm( 2 2 )= 2.60302997781105E-1 + 9.12483707029598E-1 ii
zmm( 2 3 )= 1.13664046448499E-1 + 3.51628659922457E-1 ii
zmm( 2 4 )= 8.22887316729355E-1 + 2.67132270274280E-1 ii
zmm( 3 0 )= 6.92066499820010E-1 + 5.61662474908709E-1 ii
zmm( 3 1 )= 8.61215790669069E-1 + 4.53793775035904E-1 ii
zmm( 3 2 )= 9.11977028433223E-1 + 5.97916877175643E-1 ii
zmm( 3 3 )= 1.88954691024942E-1 + 7.61492056195388E-1 ii
zmm( 3 4 )= 3.96988475880115E-1 + 1.85314117085801E-1 ii
ztt( 0 0 0 ) = 5.74365861050024E-1 + 3.67026667747193E-1 ii
ztt( 0 0 1 ) = 6.17204827078248E-1 + 3.61528704111245E-1 ii
ztt( 0 0 2 ) = 2.12929997692318E-1 + 7.14471214783597E-1 ii
ztt( 0 1 0 ) = 1.17706867921030E-1 + 2.99329148744852E-1 ii
ztt( 0 1 1 ) = 8.25002954725643E-1 + 8.24660073884139E-1 ii
ztt( 0 1 2 ) = 6.18617707220194E-2 + 7.10780524979709E-1 ii
ztt( 0 2 0 ) = 8.82833339685031E-2 + 7.77994008631443E-1 ii
ztt( 0 2 1 ) = 7.45303068657081E-1 + 3.08674919562729E-1 ii
ztt( 0 2 2 ) = 8.99373090779117E-1 + 7.63536724617489E-1 ii
ztt( 1 0 0 ) = 7.61730646137954E-1 + 4.06969640593496E-1 ii
ztt( 1 0 1 ) = 9.38749454887002E-1 + 5.62088285834570E-1 ii
ztt( 1 0 2 ) = 1.78200216115546E-2 + 5.01103225397460E-1 ii
ztt( 1 1 0 ) = 4.19092551068912E-2 + 3.68850581519702E-1 ii
ztt( 1 1 1 ) = 2.71723601627966E-1 + 8.58572561227983E-1 ii
ztt( 1 1 2 ) = 2.90365587123840E-2 + 1.74422790377598E-2 ii
ztt( 1 2 0 ) = 1.52383787628442E-1 + 1.14318671223856E-1 ii
ztt( 1 2 1 ) = 3.53907259345943E-1 + 1.19307827260023E-1 ii
ztt( 1 2 2 ) = 2.06652759204923E-1 + 2.12923957134096E-1 ii
ztt( 2 0 0 ) = 6.12947552750328E-1 + 8.09519074768535E-1 ii
ztt( 2 0 1 ) = 5.87089634773829E-1 + 2.15491643741490E-1 ii
ztt( 2 0 2 ) = 7.68056363225010E-1 + 7.23296722734020E-1 ii
ztt( 2 1 0 ) = 4.48018990665683E-1 + 8.55176118135069E-1 ii
ztt( 2 1 1 ) = 9.45017496098307E-1 + 9.09056924241156E-1 ii
ztt( 2 1 2 ) = 5.19725721105806E-1 + 3.01946252725062E-2 ii
ztt( 2 2 0 ) = 4.81066955011835E-1 + 2.92312883908075E-1 ii
ztt( 2 2 1 ) = 9.02639843012504E-1 + 6.67841511158199E-1 ii
ztt( 2 2 2 ) = 4.12278035847600E-1 + 1.56948490607063E-1 ii
ok
沒有留言:
張貼留言